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1 Introduction

This technical report is a companion to [5] that proves the diagonal blocks of the Hessian matrix for
the inverse mean-ratio metric for tetrahedral elements are positive definite. Thus, the block Jacobi
preconditioner used in the inexact Newton method to solve the mesh shape-quality optimization
problem using the average inverse mean-ratio metric for the objective function is positive definite.
Note that [5] only proves these results for triangular elements. We first recall the proposition proved
in [5] used to show convexity for fractional functions.

Definition 1.1 (Uniform Convexity [6]) Let f : <n → <, and let Ω ⊆ <n be a convex set. The

function f is uniformly convex on Ω with constant κ if there exists a constant κ > 0 such that for

all x ∈ Ω, y ∈ Ω, and λ ∈ [0, 1],

f((1 − λ)x+ λy) ≤ (1 − λ)f(x) + λf(y) − κλ(1 − λ)‖y − x‖2
2.

Proposition 1.2 Let f : <n → < and g : <n → <, and let Ω ⊆ <n be a convex set. Assume the

following properties are satisfied:

1. g is a positive, concave function on Ω.

2. f is a nonnegative, uniformly convex function with constant κ on Ω.

3. For all (x, y) ∈ Θ :=
{

(x, y) ∈ Ω × Ω | f(y)
g(y) ≥ f(x)

g(x) and g(y) ≥ g(x)
}

,

(

f(y)

g(y)
−
f(x)

g(x)

)

(g(y) − g(x)) ≤ κ‖y − x‖2
2.

Then, f
g

is a nonnegative, convex function on Ω.

Section 2 describes the inverse mean-ratio metric for tetrahedral elements, while Section 3 proves
that this metric is invariant to even permutations of the input data. These permutations reduce
the number of cases that need to be considered to only one case. We then show that the metric
is a convex function of each coordinate in Section 4 by establishing that the conditions needed
by Proposition 1.2 are satisfied. Finally, Section 5 proves that the block Jacobi preconditioner is
positive definite by showing that the Hessian matrix is invertible and assembling all the results.
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2 Mean-Ratio Description

The description in this section of the inverse mean-ratio metric [4] referenced to an ideal element
follows that of Knupp [2, 3] and Freitag and Knupp [1].

Let (a, b, c, d) be the coordinates for the four vertices in a tetrahedral element, where each vertex
is an element of <3. We define the incidence matrix A ∈ <3×3 as

A :=
[

b− a c− a d− a
]

,

and assume that det(A) > 0. That is, the incidence matrix is obtained by computing the edges of
the element emanating from the first vertex in the coordinate list and concatenating them into a
square matrix. Since det(A) > 0 by assumption, the volume of the element at the given coordinates
is nonzero.

Furthermore, let (wa, wb, wc, wd) denote the four vertices for an ideal tetrahedral element, with
W denoting the incidence matrix for this element. Moreover, assume that det(W ) > 0. Therefore,
the ideal element has a nonzero volume and W−1 is guaranteed to exist. Throughout this technical
report, we will denote

W−1 =





w̄1,1 w̄1,2 w̄1,3

w̄2,1 w̄2,2 w̄2,3

w̄3,1 w̄3,2 w̄3,3



 ,

where w̄i,j is the value for the (i, j) element of W−1.
The quantity AW−1 is the identity matrix when the trial element and the ideal element have the

same shape and size. If the trial element and the ideal element have the same shape but different
sizes, then AW−1 is a positive multiple of the identity matrix, where the multiple is the scaling
factor.

The inverse mean ratio is then defined as

‖AW−1‖2
F

3|det(AW−1)|α
,

where α = 2
3 . When the trial element and the ideal element have the same shape with a scaling

factor of σ > 0, then the numerator has a value of 3σ2. This quantity is divided by a term related to
the volume of the element in order to make the entire measure independent of scaling. Furthermore,
the denominator has a value of 3σ2 when the trial and ideal elements have the same shape. The
resulting quantity is a dimensionless measure of the shape of the trial element with respect to the
ideal element. The range of the inverse mean ratio is between one and infinity, where a value greater
than one means that the trial element and the ideal element have different shapes. This metric is
invariant to scaling, translating, and rotating the input values. Our proofs will be for the general
case, which is not always scale invariant, where 0 ≤ α ≤ 1 is arbitrary.

A mesh M is defined by a set of vertices V and the elements E that connect these vertices, where
each element is an ordered set of four vertices. The set of vertices on the boundary of the mesh is
denoted by ∂M ; these vertices are fixed for the duration of the computation. We let x ∈ <3×|V |,
where |V | is the number of vertices in the mesh, and define

Ae(x) =
[

xe2
− xe1

xe3
− xe1

xe4
− xe1

]

W−1,

where e ∈ E with ej denoting the jth vertex of element e, and xi denotes the ith column of the
coordinate matrix x. That is, Ae(x) is the incidence matrix for element e times the inverse incidence
matrix for the ideal element.

An optimization problem to minimize the average inverse mean ratio over the entire mesh is then

minx∈<3×|V |

∑

e∈E
‖Ae(x)‖2

F

3 det(Ae(x)α

subject to det(Ae(x)) > 0 ∀e ∈ E

xi = x̄i ∀i ∈ ∂M,
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where x̄i denotes the fixed location of the ith boundary vertex. The constraints that det(Ae(x)) > 0
for all e ∈ E ensure that the elements in the resulting mesh have a consistent orientation. The
absolute value in the denominator of the mean-ratio metric has been dropped because the consistent
orientation constraints ensure that this quantity is positive. The consistent orientation conditions
can be dropped from the problem if we start from a feasible point because the objective function
approaches infinity as the volume of any element approaches zero. Moreover, the fixed variables can
be removed. This reduction leads to an unconstrained optimization problem where the objective
function is twice continuously differentiable on an open set containing the level set. An inexact
Newton method can be applied to solve the resulting problem.

However, the objective function is not convex. Therefore, we need to show that the preconditioner
used in the inexact Newton method is positive definite. In particular, given a feasible point for the
optimization problem, we obtain a block Jacobi preconditioner by taking the Hessian of the objective
function, F (x), with respect to each of the vertices. That is,

M =

















∇2
x1,x1

F (x)
. . .

∇2
xi,xi

F (x)
. . .

∇2
x|V |,x|V |

F (x)

















,

where ∇2
xi,xi

F (x) ∈ <3×3. To establish that this matrix is positive definite, we prove that ∇2
xi,xi

F (x)
is positive definite for each i = {1, . . . , |V |}.

To fix notation, we define the following functions:

Aa(x) =
[

b− x c− x d− x
]

W−1

Ab(x) =
[

x− a c− a d− a
]

W−1

Ac(x) =
[

b− a x− a d− a
]

W−1

Ad(x) =
[

b− a c− a x− a
]

W−1

ma(x) =
‖Aa(x)‖2

F

det(Aa(x))α

mb(x) =
‖Ab(x)‖2

F

det(Ab(x))α

mc(x) =
‖Ac(x)‖2

F

det(Ac(x))α

md(x) =
‖Ad(x)‖2

F

det(Ad(x))α .

That is, Aa(x) is the incidence matrix times the inverse incidence matrix for the ideal element as a
function of the first vertex position, while Ab(x), Ac(x), and Ad(x) are the corresponding functions
for the second, third, and fourth vertex positions, respectively, while ma(x), mb(x), mc(x), and
md(x) are the resulting inverse mean-ratio functions. We also define the following sets:

Ωa =
{

x ∈ <3 | det(Aa(x)) > 0
}

Ωb =
{

x ∈ <3 | det(Ab(x)) > 0
}

Ωc =
{

x ∈ <3 | det(Ac(x)) > 0
}

Ωd =
{

x ∈ <3 | det(Ad(x)) > 0
}

.

3 Permutation Properties

The first step in proving that the block Jacobi preconditioner is positive definite is to show that
the mean ratio metric for tetrahedral elements is invariant to an even permutation applied to the
vertices for both the trial and ideal elements. The permutation needs to be even so that we do not
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change the sign of det(W ). This invariance means that we need to prove convexity and positive
definiteness for only one function since the others can be obtained by applying permutations.

Lemma 3.1 Let (wa, wb, wc, wd) ∈ <3×4 be given such that det(W ) > 0, and let (a, b, c, d) ∈ <3×4

be arbitrary. Then, the following are equivalent:

1.
[

b− a c− a d− a
] [

wb − wa wc − wa wd − wa
]−1

2.
[

c− b a− b d− b
] [

wc − wb wa − wb wd − wb
]−1

3.
[

c− a d− a b− a
] [

wc − wa wd − wa wb − wa
]−1

Proof:
[

b − a c − a d − a
] [

wb
− wa wc

− wa wd
− wa

]−1

=
[

c − b a − b d − b
]





0 1 0
−1 −1 −1

0 0 1









[

wc
− wb wa

− wb wd
− wb

]





0 1 0
−1 −1 −1

0 0 1









−1

=
[

c − b a − b d − b
]





0 1 0
−1 −1 −1

0 0 1









0 1 0
−1 −1 −1

0 0 1





−1

[

wc
− wb wa

− wb wd
− wb

]−1

=
[

c − b a − b d − a
] [

wc
− wb wa

− wb wd
− wa

]−1

[

b − a c − a d − a
] [

wb
− wa wc

− wa wd
− wa

]−1

=
[

c − a d − a b − a
]





0 1 0
0 0 1
1 0 0









[

wc
− wa wd

− wa wb
− wa

]





0 1 0
0 0 1
1 0 0









−1

=
[

c − a d − a b − a
]





0 1 0
0 0 1
1 0 0









0 1 0
0 0 1
1 0 0





−1

[

wc
− wa wd

− wa wb
− wa

]−1

=
[

c − a d − a b − a
] [

wc
− wa wd

− wa wb
− wa

]−1
.

�

4 Convexity Properties

This section proves that md(x) is a convex function of x on Ωd by establishing that the assumptions
for Proposition 1.2 are satisfied.

Lemma 4.1 For any weight matrix W−1,

1. det(Ad(x)) is a linear function of x.

2. Ωd is a convex set.

Proof: From the properties of the determinant,

det(Ad(x)) = det









b1 − a1 c1 − a1 x1 − a1

b2 − a2 c2 − a2 x2 − a2

b3 − a3 c3 − a3 x3 − a3



W−1





= det









b1 − a1 c1 − a1 x1 − a1

b2 − a2 c2 − a2 x2 − a2

b3 − a3 c3 − a3 x3 − a3







 det
(

W−1
)

=





(x1 − a1)((b2 − a2)(c3 − a3) − (b3 − a3)(c2 − a2)) +
(a2 − x2)((b1 − a1)(c3 − a3) − (b3 − a3)(c1 − a1)) +
(x3 − a3)((b1 − a1)(c2 − a2) − (b2 − a2)(c1 − a1))



 det
(

W−1
)
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This calculation shows that det(Ad(x)) is a linear function of x. Furthermore, Ωd consists of a strict
linear inequality, which forms a convex set. �

Lemma 4.2 For any weight matrix W−1 and for any 0 ≤ α ≤ 1, det(Ad(x))
α is a concave function

of x on Ωd.

Proof: Since det(Ad(x)) is a linear function of x by Lemma 4.1,

det(Ad((1 − λ)x+ λy)) = (1 − λ) det(Ad(x)) + λdet(Ad(y))

for any λ ∈ [0, 1]. If x ∈ Ωd and y ∈ Ωd, then (1 − λ)x + λy ∈ Ωd because Ωd is a convex set
by Lemma 4.1. Therefore, det(Ad((1 − λ)x + λy)) > 0. The power is applied to both sides of the
equation to obtain

det(Ad((1 − λ)x+ λy))α = ((1 − λ) det(Ad(x)) + λdet(Ad(y)))
α

≥ (1 − λ) det(Ad(x))
α + λdet(Ad(y))

α,

where the last inequality holds because ψα is a concave function on the region ψ ≥ 0 for any
0 ≤ α ≤ 1 [7]. �

Lemma 4.3 For any weight matrix W−1 with det(W−1) > 0, ‖Ad(x)‖
2
F is a uniformly convex

function of x with constant κ = w̄2
3,1 + w̄2

3,2 + w̄2
3,3 > 0.

Proof: The Hessian matrix for ‖Ad(x)‖F is 2(w̄2
3,1 + w̄2

3,2 + w̄2
3,3)I, where I is the identity ma-

trix. Therefore, this matrix is uniformly positive definite with constant 2(w̄2
3,1 + w̄2

3,2 + w̄2
3,3). The

relationship between equivalent definitions of uniform convexity then imply that

‖Ad((1 − λ)x+ λy)‖2
F ≤ (1 − λ)‖Ad(x)‖

2
F + λ‖Ad(y)‖

2
F −

(

w̄2
3,1 + w̄2

3,2 + w̄2
3,3

)

λ(1 − λ)‖y − x‖2
2.

Since det(W−1) > 0, either w̄3,1 6= 0, w̄3,2 6= 0, or w̄3,3 6= 0. Hence, ‖Ad(x)‖
2
F is a uniformly convex

function with κ = w̄2
3,1 + w̄2

3,2 + w̄2
3,3 > 0. �

Lemma 4.4 Let W−1 be any weight matrix with det(W−1) > 0, and let 0 ≤ α ≤ 1. Moreover,

define Ω = Ωd, f(x) = ‖Ad(x)‖
2
F , and g(x) = det(Ad(x))

α. Then for any (x, y) ∈ Θ, where Θ is

defined in Proposition 1.2,

(

f(y)

g(y)
−
f(x)

g(x)

)

(g(y) − g(x)) ≤ (w̄2
3,1 + w̄2

3,2 + w̄2
3,3)‖y − x‖2

2.

Proof: This lemma is proved by showing that

sup
(x,y)∈Θ

(

f(y)

g(y)
−
f(x)

g(x)

)

(g(y) − g(x)) − (w̄2
3,1 + w̄2

3,2 + w̄2
3,3)‖y − x‖2

2 ≤ 0.

If Θ is the empty set, then there is nothing to prove. Therefore, assume Θ is nonempty, and
let (x, y) ∈ Θ. We then make the change of variables x = Rx̄ + a and y = Rȳ + a, where R is an
orthogonal matrix with det(R) = 1. In particular, R is defined so that

RT
[

b− a c− a
]

=





d̄1,1 d̄1,2

0 d̄2,2

0 0



 ,
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where d̄1,1 and d̄2,2 are positive and d̄1,2 is unrestricted. Such a matrix can be constructed by
multiplying three rotation matrices together and using the fact that det(Ad(x)) > 0.

After making this substitution, we have the following expressions for ‖Ad(x)‖
2
F , det(Ad(x)), and

‖y − x‖2
2:

‖Ad(x)‖
2
F = ‖Ad(Rx̄+ a)W−1‖2

F

=
∥

∥

[

b− a c− a Rx̄+ a− a
]

W−1
∥

∥

2

F

=
∥

∥R
[

RT (b− a) RT (c− a) x̄
]

W−1
∥

∥

2

F

=

∥

∥

∥

∥

∥

∥





d̄1,1 d̄1,2 x̄1

0 d̄2,2 x̄2

0 0 x̄3









w̄1,1 w̄1,2 w̄1,3

w̄2,1 w̄2,2 w̄2,3

w̄3,1 w̄3,2 w̄3,3





∥

∥

∥

∥

∥

∥

2

F

det(Aa(x)) = det



R





d̄1,1 d̄1,2 x̄1

0 d̄2,2 x̄2

0 0 x̄3



W−1





= d̄1,1d̄2,2 det(W−1)x̄3

‖y − x‖2
2 = ‖Rȳ + a−Rx̄− a‖2

2

= ‖R(ȳ − x̄)‖2
2

= ‖ȳ − x̄‖2
2,

where the orthogonality of R is used in the norm calculations and det(R) = 1 is used in the
determinant.

We use the following definitions throughout the remainder of this section.

ν = d̄1,1d̄2,2 det(W−1)
∆ = w̄2

3,1 + w̄2
3,2 + w̄2

3,3

δ1(ξ) =





(d̄1,1w̄1,1 + d̄1,2w̄2,1 + w̄3,1ξ)
2 +

(d̄1,1w̄1,2 + d̄1,2w̄2,2 + w̄3,2ξ)
2 +

(d̄1,1w̄1,3 + d̄1,2w̄2,3 + w̄3,3ξ)
2





δ2(ξ) = (d̄2,2w̄2,1 + w̄3,1ξ)
2 + (d̄2,2w̄2,2 + w̄3,2ξ)

2 + (d̄2,2w̄2,3 + w̄3,3ξ)
2

The optimization problem we want to solve is then

supx̄∈<3,ȳ∈<3

(

δ1(ȳ1)+δ2(ȳ2)+∆ȳ2
3

(νȳ3)α −
δ1(x̄1)+δ2(x̄2)+∆x̄2

3

(νx̄3)α

)

((νȳ3)
α − (νx̄3)

α) − ∆‖ȳ − x̄‖2
2

subject to νȳ3 ≥ νx̄3 > 0
(νȳ3)

α ≥ (νx̄3)
α

δ1(ȳ1)+δ2(ȳ2)+∆ȳ2
3

(νȳ3)α ≥
δ1(x̄1)+δ2(x̄2)+∆x̄2

3

(νx̄3)α .

Eliminating ν from the problem because it is a positive constant, and dropping the last two
constraints, we obtain the following optimization problem, which provides an upper bound on the
supremum:

supx̄∈<3,ȳ∈<3

(

δ1(ȳ1)+δ2(ȳ2)+∆ȳ2
3

ȳα
3

−
δ1(x̄1)+δ2(x̄2)+∆x̄2

3

x̄α
3

)

(ȳα
3 − x̄α

3 ) − ∆‖ȳ − x̄‖2
2

subject to ȳ3 ≥ x̄3 > 0

Examining those terms involving ȳ2
3 and x̄2

3, we obtain

∆((ȳ2−α
3 − x̄2−α

3 )(ȳα
3 − x̄α

3 ) − (ȳ3 − x̄3)
2) = ∆(ȳ2

3 − ȳ2−α
3 x̄α

3 − ȳα
3 x̄

2−α
3 + x̄2

3 − (ȳ3 − x̄3)
2)

= ∆(2ȳ3x̄3 − ȳ2−α
3 x̄α

3 − ȳα
3 x̄

2−α
3 )

= ∆ȳ3x̄3

(

2 −
ȳ1−α
3

x̄1−α
3

−
x̄1−α
3

ȳ1−α
3

)

≤ 0,
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where the last inequality is obtained from the arithmetic-geometric mean inequality. After removing
these terms, we are left with the following optimization problem, which provides an upper bound
on the supremum:

supx̄∈<3,ȳ∈<3

(

δ1(ȳ1)+δ2(ȳ2)
ȳα
3

− δ1(x̄1)+δ2(x̄2)
x̄α
3

)

(ȳα
3 − x̄α

3 ) − ∆((ȳ1 − x̄1)
2 + (ȳ2 − x̄2)

2)

subject to ȳ3 ≥ x̄3 > 0.

We now write ȳα
3 = βx̄α

3 for β ≥ 1 because x̄α
3 > 0, eliminate ȳ3 and x̄3, and rearrange the terms

to obtain the equivalent optimization problem:

supȳ1∈<,ȳ2∈<,β≥1 supx̄1∈<,x̄2∈<
1
β





(β − 1)(δ1(ȳ1) + δ2(ȳ2)) −
β(β − 1)(δ1(x̄1) + δ2(x̄2)) −
β∆((ȳ1 − x̄1)

2 + (ȳ2 − x̄2)
2)



 .

Note that the objective function is strongly concave in the x̄1 and x̄2 variables. Therefore, we can
set to zero the gradient of the objective function with respect to x̄1 and x̄2 to derive the optimal
solution for x̄1 and x̄2 given ȳ1, ȳ2, and β.

∇x̄1
obj(x̄1, x̄2, ȳ1, ȳ2, β) = −2



(β − 1)





(d̄1,1w̄1,1 + d̄1,2w̄2,1 + w̄3,1x̄1)w̄3,1 +
(d̄1,1w̄1,2 + d̄1,2w̄2,2 + w̄3,2x̄1)w̄3,2 +
(d̄1,1w̄1,3 + d̄1,2w̄2,3 + w̄3,3x̄1)w̄3,3



 + ∆(x̄1 − ȳ1)





= −2



(β − 1)



∆x̄1 +





(d̄1,1w̄1,1 + d̄1,2w̄2,1)w̄3,1 +
(d̄1,1w̄1,2 + d̄1,2w̄2,2)w̄3,2 +
(d̄1,1w̄1,3 + d̄1,2w̄2,3)w̄3,3







 + ∆(x̄1 − ȳ1)





= −2



β∆x̄1 + (β − 1)





(d̄1,1w̄1,1 + d̄1,2w̄2,1)w̄3,1 +
(d̄1,1w̄1,2 + d̄1,2w̄2,2)w̄3,2 +
(d̄1,1w̄1,3 + d̄1,2w̄2,3)w̄3,3



 − ∆ȳ1





= −2β∆



x̄1 + β−1
β∆





(d̄1,1w̄1,1 + d̄1,2w̄2,1)w̄3,1 +
(d̄1,1w̄1,2 + d̄1,2w̄2,2)w̄3,2 +
(d̄1,1w̄1,3 + d̄1,2w̄2,3)w̄3,3



 −
ȳ1

β





∇x̄2
obj(x̄1, x̄2, ȳ1, ȳ2, β) = −2



(β − 1)





(d̄2,2w̄2,1 + w̄3,1x̄2)w̄3,1 +
(d̄2,2w̄2,2 + w̄3,2x̄2)w̄3,2 +
(d̄2,2w̄2,3 + w̄3,3x̄2)w̄3,3



 + ∆(x̄2 − ȳ2)





= −2



(β − 1)



∆x̄2 +





(d̄2,2w̄2,1)w̄3,1 +
(d̄2,2w̄2,2)w̄3,2 +
(d̄2,2w̄2,3)w̄3,3







 + ∆(x̄2 − ȳ2)





= −2



β∆x̄2 + (β − 1)





(d̄2,2w̄2,1)w̄3,1 +
(d̄2,2w̄2,2)w̄3,2 +
(d̄2,2w̄2,3)w̄3,3



 − ∆ȳ2





= −2β∆



x̄2 + β−1
β∆





(d̄2,2w̄2,1)w̄3,1 +
(d̄2,2w̄2,2)w̄3,2 +
(d̄2,2w̄2,3)w̄3,3



 −
ȳ2

β



 .

Let

Λ1 = (d̄1,1w̄1,1 + d̄1,2w̄2,1)w̄3,1 + (d̄1,1w̄1,2 + d̄1,2w̄2,2)w̄3,2 + (d̄1,1w̄1,3 + d̄1,2w̄2,3)w̄3,3

Λ2 = (d̄2,2w̄2,1)w̄3,1 + (d̄2,2w̄2,2)w̄3,2 + (d̄2,2w̄2,3)w̄3,3

Therefore,
x̄1 = ȳ1

β
− β−1

β
Λ1

∆

x̄2 = ȳ2

β
− β−1

β
Λ2

∆ .
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Substituting these quantities into the objective function gives an equivalent optimization problem

supȳ1∈<,ȳ2∈<,β≥1
1
β











(β − 1)(δ1(ȳ1) + δ2(ȳ2)) −

β(β − 1)
(

δ1

(

ȳ1

β
− β−1

β
Λ1

∆

)

+ δ2

(

ȳ2

β
− β−1

β
Λ2

∆

))

−

β∆

(

(

ȳ1 −
ȳ1

β
− β−1

β
Λ1

∆

)2

+
(

ȳ2 −
ȳ2

β
− β−1

β
Λ2

∆

)2
)











.

Examining those terms involving ȳ2
1 and β, we obtain

1
β











(β − 1)δ1(ȳ1) −

β(β − 1)
(

δ1

(

ȳ1

β
−

β−1
β

Λ1

∆

))

−

β∆

(

(

ȳ1 −
ȳ1

β
−

β−1
β

Λ1

∆

)2
)











= −
(β−1)2

β∆





((d̄1,1w̄1,1 + d̄1,2w̄2,1)w̄3,2 − (d̄1,1w̄1,2 + d̄1,2w̄2,2)w̄3,1)
2 +

((d̄1,1w̄1,1 + d̄1,2w̄2,1)w̄3,3 − (d̄1,1w̄1,3 + d̄1,2w̄2,3)w̄3,1)
2 +

((d̄1,1w̄1,2 + d̄1,2w̄2,2)w̄3,3 − (d̄1,1w̄1,3 + d̄1,2w̄2,3)w̄3,2)
2





= −
(β−1)2

β∆





























det









w̄1,1 w̄1,2 −d̄1,2

w̄2,1 w̄2,2 d̄1,1

w̄3,1 w̄3,2 0







 +

det









w̄1,1 −d̄1,2 w̄1,3

w̄2,1 d̄1,1 w̄2,3

w̄3,1 0 w̄3,3







 +

det









−d̄1,2 w̄1,2 w̄1,3

d̄1,1 w̄2,2 w̄2,3

0 w̄3,2 w̄3,3





































= −
(β−1)2

β

det(W−1)2

∆

∥

∥

∥

∥

∥

∥

W





−d̄1,2

d̄1,1

0





∥

∥

∥

∥

∥

∥

2

2

,

where the last equation is derived from Cramer’s rule.
Examining those terms involving ȳ2

2 and β, we obtain

1
β











(β − 1)δ2(ȳ2) −

β(β − 1)
(

δ2

(

ȳ2

β
− β−1

β
Λ2

∆

))

−

β∆

(

(

ȳ2 −
ȳ2

β
− β−1

β
Λ2

∆

)2
)











= − (β−1)2

β∆





(d̄2,2w̄2,1w̄3,2 − d̄2,2w̄3,1w̄2,2)
2 +

(d̄2,2w̄2,1w̄3,3 − d̄2,2w̄3,1w̄2,3)
2 +

(d̄2,2w̄2,2w̄3,3 − d̄2,2w̄3,2w̄2,3)
2





= − (β−1)2

β∆





























det









w̄1,1 w̄1,2 d̄2,2

w̄2,1 w̄2,2 0
w̄3,1 w̄3,2 0







 +

det









w̄1,1 d̄2,2 w̄1,3

w̄2,1 0 w̄2,3

w̄3,1 0 w̄3,3







 +

det









d̄2,2 w̄1,2 w̄1,3

0 w̄2,2 w̄2,3

0 w̄3,2 w̄3,3





































= − (β−1)2

β

det(W−1)2

∆

∥

∥

∥

∥

∥

∥

W





d̄2,2

0
0





∥

∥

∥

∥

∥

∥

2

2

,

where the last equation is derived from Cramer’s rule.
Therefore, the optimization problem reduces to

supβ≥1 − (β−1)2

β

det(W−1)2

∆







∥

∥

∥

∥

∥

∥

W





−d̄1,2

d̄1,1

0





∥

∥

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

∥

∥

W





d̄2,2

0
0





∥

∥

∥

∥

∥

∥

2

2






.
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The constant in this optimization problem is positive since the null space of W is the zero vector,
det(W−1) > 0, and ∆ > 0. Hence, the superemum is zero. �

Theorem 4.5 Let W−1 be any weight matrix with det(W−1) > 0, and let 0 ≤ α ≤ 1. Then, md(x)
is a nonnegative, convex function of x on Ωd.

Proof: Lemma 4.1 shows that Ωd is a convex set, Lemma 4.2 demonstrates that det(Ad(x))
α is a

concave function on Ωd, and det(Ad(x))
α > 0 for any x ∈ Ωd. Therefore, Property 1 of Proposi-

tion 1.2 is satisfied. Furthermore, ‖Ad(x)‖
2
F is a nonnegative function of x and Lemma 4.3 shows

that ‖Ad(x)‖
2
F is a uniformly convex function of x with constant w̄2

3,1 + w̄2
3,2 + w̄2

3,3 > 0. Therefore,
Property 2 of Proposition 1.2 holds. Lemma 4.4 shows that Property 3 is satisfied. Therefore, by
Proposition 1.2, md(x) is a nonnegative, convex function of x on Ωd. �

5 Preconditioner Properties

Lemma 5.1 Let W−1 be any weight matrix with det(W−1) > 0, and let 0 ≤ α ≤ 1. Then for any

x ∈ Ωd, ∇
2
x,xmd(x) is invertible.

Proof: If Ωd is empty, then there is nothing to prove. Therefore, let Ωd be nonempty, and let
x ∈ Ωd. Define R to be as in the proof of Lemma 4.4. Then we have

md(x) = md(Rx̄+ a)

where x̄ = RT (x− a). By the chain rule,

∇xmd(x) = [∇x̄md(Rx̄+ a)]RT

and
∇2

x,xmd(x) = R
[

∇2
x̄,x̄md(Rx̄+ a)

]

RT .

We can ignore the terms involving R, since R is an orthogonal matrix with det(R) = 1.
Using the definitions from Lemma 4.4, we recall that

md(Rx̄+ a) =

∥

∥

∥

∥

∥

∥

∥

∥









d̄1,1 d̄1,2 x̄1

0 d̄2,2 x̄2

0 0 x̄3

















w̄1,1 w̄1,2 w̄1,3

w̄2,1 w̄2,2 w̄2,3

w̄3,1 w̄3,2 w̄3,3









∥

∥

∥

∥

∥

∥

∥

∥

2

F

det

















d̄1,1 d̄1,2 x̄1

0 d̄2,2 x̄2

0 0 x̄3









W−1









α

=

∥

∥

∥

∥

∥

∥

∥

∥









d̄1,1 d̄1,2 x̄1

0 d̄2,2 x̄2

0 0 x̄3

















ŵ1,1 ŵ1,2 ŵ1,3

0 ŵ2,2 ŵ2,3

0 0 ŵ3,3









∥

∥

∥

∥

∥

∥

∥

∥

2

F

(νx̄3)α ,

where we have applied an orthogonal matrix S with det(S) = 1 to the right-hand side of the
numerator to eliminate constants. Moreover, d̄1,1 > 0, d̄2,2 > 0, and x̄3 > 0 because x ∈ Ωd, and
ŵ1,1ŵ2,2ŵ3,3 > 0 because det(W−1) > 0.

Let
φ1 = d̄1,1ŵ1,1

φ2 = d̄2,2ŵ2,2

ρ = d̄1,1ŵ1,2 + d̄1,2ŵ2,2

ω1(ξ) = d̄1,1ŵ1,3 + d̄1,2ŵ2,3 + ŵ3,3ξ

ω2(ξ) = d̄2,2ŵ2,3 + ŵ3,3ξ.
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We then have by direct computation that the Hessian matrix is











2ŵ2
3,3

ναx̄α
3

0 −
2αŵ3,3ω1(x̄1)

ναx̄α+1

3

0
2ŵ2

3,3

ναx̄α
3

−
2αŵ3,3ω2(x̄2)

ναx̄α+1

3

−
2αŵ3,3ω1(x̄1)

ναx̄α+1

3

−
2αŵ3,3ω2(x̄2)

ναx̄α+1

3

α(α+1)(φ2
1+φ2

2+ρ2+ω1(x̄1)
2+ω2(x̄2)

2)

ναx̄α+2

3

+
(1−α)(2−α)ŵ2

3,3

ναx̄α
3











We now compute the null space of this matrix by solving the system of equations:











2ŵ2
3,3

ναx̄α
3

0 −
2αŵ3,3ω1(x̄1)

ναx̄α+1

3

0
2ŵ2

3,3

ναx̄α
3

−
2αŵ3,3ω2(x̄2)

ναx̄α+1

3

−
2αŵ3,3ω1(x̄1)

ναx̄α+1

3

−
2αŵ3,3ω2(x̄2)

ναx̄α+1

3

α(α+1)(φ2
1+φ2

2+ρ2+ω1(x̄1)
2+ω2(x̄2)

2)

ναx̄α+2

3

+
(1−α)(2−α)ŵ2

3,3

ναx̄α
3















z1
z2
z3



 = 0.

The first and second constraints imply

z1 = αω1(x̄1)
ŵ3,3x̄3

z3

z2 = αω2(x̄1)
ŵ3,3x̄3

z3.

Substituting these into the third equation gives a coefficient on z3 of

α(α+1)(φ2
1+φ2

2+ρ2+ω1(x̄1)
2+ω2(x̄2)

2)

ναx̄α+2

3

+
(1−α)(2−α)ŵ2

3,3

ναx̄α
3

−
2αŵ3,3ω1(x̄1)

ναx̄α+1

3

αω1(x̄1)
ŵ3,3x̄3

−
2αŵ3,3ω2(x̄1)

ναx̄α+1

3

αω2(x̄2)
ŵ3,3x̄3

=
α(α+1)(φ2

1+φ2
2+ρ2+ω1(x̄1)

2+ω2(x̄2)
2)

ναx̄α+2

3

+
(1−α)(2−α)ŵ2

3,3

ναx̄α
3

− 2α2ω1(x̄1)
2

ναx̄α+2

3

− 2α2ω2(x̄1)
2

ναx̄α+2

3

=
α(1+α)(φ2

1+φ2
2+ρ2)

ναx̄α+2

3

+ α(1−α)(ω1(x̄1)
2+ω2(x̄2)

2)

ναx̄α+2

3

+
(1−α)(2−α)ŵ2

3,3

ναx̄α
3

.

The first term is positive whenever 0 < α ≤ 1 since φ1 6= 0, φ2 6= 0, ν > 0, and x̄3 > 0. The second
term is nonnegative whenever 0 ≤ α ≤ 1. The third term is positive whenever 0 ≤ α < 1 since
ŵ3,3 6= 0, ν > 0, and x̄3 > 0. Therefore, this coefficient is positive and z3 = 0, which implies that
z1 = 0 and z2 = 0. Since the null space is the zero vector, the matrix is invertible. �

Corollary 5.2 Let W−1 be any weight matrix with det(W−1) > 0, and let 0 ≤ α ≤ 1. Then for

any x ∈ Ωd, ∇
2
x,xmd(x) is positive definite.

Proof: Since md(x) is convex on Ωd by Theorem 4.5 and twice continuously differentiable on this
set, ∇2

x,xmd(x) is positive semidefinite for any x ∈ Ωd. However, Lemma 5.1 shows that the Hessian
matrix is also invertible for any x ∈ Ωd. Therefore, we conclude that ∇2

x,xmd(x) is positive definite
for any x ∈ Ωd. �

Corollary 5.3 Let W−1 be any weight matrix with det(W−1) > 0, and let 0 ≤ α ≤ 1. Then,

1. ∇2
x,xma(x) is positive definite for any x ∈ Ωa.

2. ∇2
x,xmb(x) is positive definite for any x ∈ Ωb.

3. ∇2
x,xmc(x) is positive definite for any x ∈ Ωc.

Proof: By Lemma 3.1

Aa(x) =
[

b− x c− x d− x
] [

wb − wa wc − wa wd − wa
]−1

=
[

c− b x− b d− b
] [

wc − wb wa − wb wd − wb
]−1

=
[

d− b c− b x− b
] [

wd − wb wc − wb wa − wb
]−1

.
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We now apply Corollary 5.2 to ma(x) using this equivalent redefinition. Therefore, ∇2
x,xma(x) is

positive definite for any x ∈ Ωa. A similar argument using applications of Lemma 3.1 shows that
∇2

x,xmb(x) is positive definite for any x ∈ Ωb and ∇2
x,xmc(x) is positive definite for any x ∈ Ωc. �

Corollary 5.4 Let W−1 be any weight matrix with det(W−1) > 0, and let x ∈ <3×|V | be given

such that det(Ae(x)) > 0 for all e ∈ E. Then, the block Jacobi preconditioner for the shape-quality

optimization problem using the mean-ratio metric is positive definite.

Proof: The objective function, F (x), for the shape-quality optimization problem consists of the
sum of the mean-ratio metric for each element. Therefore,

∇2
xi,xi

F (x) =

(
∑

{e∈E|e1=i} ∇
2
xi,xi

ma(xi) +
∑

{e∈E|e2=i} ∇
2
xi,xi

mb(xi) +
∑

{e∈E|e3=i} ∇
2
xi,xi

mc(xi) +
∑

{e∈E|e4=i} ∇
2
xi,xi

md(xi)

)

,

where a = xe1
, b = xe2

, c = xe3
, and d = xe4

in the mean ratio metric for each e ∈ E. Corollary 5.2
and Corollary 5.3 now imply that ∇2

xi,xi
F (x) is positive definite because the sum of positive definite

matrices is also positive definite. Therefore, the block Jacobi preconditioner is positive definite. �
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